![]()
พลังงานที่ได้มาจากกระแสพลังงานที่ต่อเนื่องและเกิดซ้ำ ๆ ในสิ่งแวดล้อม แหล่งของพลังงานหมุนเวียน คือ แหล่งพลังงานที่เกิดขึ้นอยู่ต่อเนื่องไม่หมดไป เช่น พลังงานแสงอาทิตย์ ลม ชีวมวล หรือแม้แต่ขยะมูลฝอย เป็นต้น ซึ่งเทคโนโลยีเกี่ยวกับพลังงานหมุนเวียนนี้ได้รับการพัฒนาไปอย่างมาก รวมถึงการเปลี่ยนรูปพลังงานหมุนเวียนเหล่านี้เป็นพลังงานไฟฟ้า
ส่วนประเทศไทยในอดีตนั้นการผลิตไฟฟ้าได้ถูกจำกัดสิทธิแก่เฉพาะการไฟฟ้าของประเทศไทยเท่านั้น แต่กฎระเบียบเหล่านี้ได้รับการพัฒนา จนเอกชนสามารถทำการผลิตไฟฟ้าได้ด้วยเช่นกัน ตลอดถึงเอกชนรายเล็ก ๆ หรือชุมชนก็สามารถทำการผลิตไฟฟ้าแล้วส่งขายไฟฟ้าให้กับการไฟฟ้าฝ่ายจำหน่ายได้ด้วย จึงเป็นโอกาสที่ดีที่ผู้สนใจในการรักษาสิ่งแวดล้อม และลดการพึ่งพาระบบไฟฟ้าจากการไฟฟ้าเพียงระบบเดียว หรือต้องการมีบ้านเรือนหรือโรงงานที่มีระบบไฟฟ้าเองเพื่อประสิทธิภาพหรือภาพลักษณ์ที่ดียิ่งขึ้น
ซึ่งพลังงานหมุนเวียนที่มีศักยภาพในประเทศไทย และได้มีการพัฒนาและทดลองติดตั้งอยู่แล้วในประเทศไทย มีหลายประเภท ดังนี้
ประโยชน์จากพลังงานหมุนเวียนประโยชน์ที่ได้จากพลังงานหมุนเวียนมีหลาย ๆ ด้าน ทั้งการรักษาสิ่งแวดล้อมลดมลพิษจากการผลิตไฟฟ้าจากเชื้อเพลิงฟอสซิล จำพวกผลิตภัณฑ์ปิโตรเลียมต่างๆ อีกทั้งลดการนำเข้าเชื้อเพลิงพวกนี้จากต่างประเทศ และพลังงานเชื้อเพลิงยังให้ผลตอบแทนการลงทุนที่น่าสนใจอีกด้วยซึ่งวัสดุเหลือใช้ทางการเกษตรสามารถนำมาเป็นเชื้อเพลิงเพื่อผลิตกระแสไฟฟ้าได้ และถือว่าเป็นการสร้างประโยชน์จากสิ่งด้อยค่าให้กลับมามีค่าในการพัฒนาประเทศได้ นอกจากนี้ยังช่วยบรรเทาปัญหาการเพิ่มการสะสมของก๊าซคาร์บอนไดออกไซด์ในบรรยากาศ ที่จะนำไปสู่การเกิดปฏิกิริยาเรือนกระจกและจะทำให้อุณหภูมิของโลกสูงขึ้น
ที่มา www.panyathai.or.th
|
วันอังคารที่ 26 มกราคม พ.ศ. 2559
พลังงานหมุนเวียน
วันศุกร์ที่ 22 มกราคม พ.ศ. 2559
วงจรไฟฟ้า
วงจรไฟฟ้า เป็นการนำเอาสายไฟฟ้าหรือตัวนำไฟฟ้าที่เป็นเส้นทางเดินให้กระแสไฟฟ้าสามารถไหลผ่านต่อถึงกันได้นั้นเราเรียกว่า วงจรไฟฟ้า การเคลื่อนที่ของอิเล็กตรอนที่อยู่ภายในวงจรจะเริ่มจากแหล่งจ่ายไฟไปยังอุปกรณ์ไฟฟ้า ดังการแสดงการต่อวงจรไฟฟ้าเบื้องต้นโดยการต่อแบตเตอรี่ต่อเข้ากับหลอดไฟ หลอดไฟฟ้าสว่างได้เพราะว่ากระแสไฟฟ้าสามารถไหลได้ตลอดทั้งวงจรไฟฟ้าและเมื่อหลอดไฟฟ้าดับก็เพราะว่ากระแสไฟฟ้าไม่สามารถไหลได้ตลอดทั้งวงจร เนื่องจากสวิตซ์เปิดวงจรไฟฟ้าอยู่นั่นเอง

แสดงวงจรไฟฟ้าเบื้องต้น มีส่วนประกอบหลัก 3 ส่วน ส่วนประกอบหลักแต่ละส่วนมีหน้าที่การทำงานดังนี้
1. แหล่งจ่ายไฟฟ้า เป็นแหล่งจ่ายแรงดันและกระแสให้กับอุปกรณ์ที่ใช้พลังงานไฟฟ้าโดยแหล่งจ่ายไฟฟ้าสามารถนำมาได้จากหลายแหล่งกำเนิด เช่น จากปฏิกิริยาเคมี จากขดลวดตัดสนามแม่เหล็ก และจากแสงสว่าง เป็นต้น บอกหน่วยการวัดเป็นโวลต์ (Volt) หรือ V
2. โหลดหรืออุปกรณ์ไฟฟ้า เป็นอุปกรณ์ต่างๆ ที่ใช้ไฟฟ้าในการทำงาน โหลดจะทำหน้าที่เปลี่ยนพลังงานไฟฟ้าให้เป็นพลังงานรูปอื่นๆ เช่น เสียง แสง ความร้อน ความเย็น และการสั่นสะเทือน เป็นต้น โหลดเป็นคำกล่าวโดยรวงมถึงอุปกรณ์ไฟฟ้าทุกชนิดอะไรก็ได้ เช่น ตู้เย็น พัดลม เครื่องซักผ้า โทรทัศน์ วิทยุ และเครื่องปรับอากาศ เป็นต้น โหลดแต่ละชนิดจะใชัพลังงานไฟฟ้าไม่เท่ากัน ซึ่งแสดงด้วยค่าแรงดัน กระแส และกำลังไฟฟ้า
3. สายไฟต่อวงจร เป็นสายตัวนำหรือสายไฟฟ้า ใช้เชื่อมต่อวงจรให้ต่อถึงกันแบบครบรอบ ทำให้แหล่งจ่ายแรงดันต่อถึงโหลดเกิดกระแสไหลผ่านวงจร จากแหล่งจ่ายไม่โหลดและกลับมาครบรอบที่แหล่งจ่ายอีกครั้ง สายไฟฟ้าที่ใช้ต่อวงจรทำด้วยทองแดงมีฉนวนหุ้มโดยรอบเพื่อให้เกิดความปลอดภัยในการใช้งาน
6.2 แบบวงจรไฟฟ้า
ส่วนสำคัญของวงจรไฟฟ้าคือการต่อโหลดใช้งาน โหลดที่นำมาต่อใช้งานในวงจรไฟฟ้าสามารถต่อได้เป็น 3 แบบด้วยกัน ได้แก่ วงจรำฟฟ้าแบบอนุกรม (Series Electrical Circuit) วงจรไฟฟ้าแบบขนาน (Parallel Electrical Circuit) และวงจรไฟฟ้าแบบผสม (Series - Parallel Electrical Circuit)
6.2.1 วงจรไฟฟ้าแบบอนุกรม
จรอนุกรมหมายถึง การนำเอาอุปกรณ์ทางไฟฟ้ามาต่อกันในลักษณะที่ปลายด้านหนึ่งของอุปกรณ์ตัวที่ 1 ต่อเข้ากับอุปกรณ์ตัวที่ 2 จากนั้นนำปลายที่เหลือของอุปกรณ์ตัวที่ 2 ไปต่อกับอุปกรณ์ตัวที่ 3 และจะต่อลักษณะนี้ไปเรื่อยๆ ซึ่งการต่อแบบนี้จะทำให้กระแสไฟฟ้าไหลไปในทิศทางเดียวกระแสไฟฟ้าภายในวงจรอนุกรมจะมีค่าเท่ากันทุกๆจุด ค่าความต้านทานรวมของวงจรอนุกรมนั้นคือการนำเอาค่าความต้านทานทั้งหมดนำมารวมกันส่วนแรงดันไฟฟ้าในวงจรอนุกรมนั้นแรงดันจะปรากฎคร่อมตัวต้านทานทุกตัวที่จะมีกระแสไฟฟ้าไหลผ่านซึ่งแรงดันไฟฟ้าที่เกิดขึ้นจะมีค่าไม่เท่ากันโดยสามารถคำนวนหาได้จากกฎของโอห์ม
รูปแสดงวงจรไฟฟ้าแบบอนุกรม
|
6.2.2 วงจรไฟฟ้าแบบขนาน
วงจรที่เกิดจากการต่ออุปกรณ์ไฟฟ้าตั้งแต่ 2 ตัวขึ้นไปให้ขนานกับแหล่งจ่ายไฟมีผลทำให้ค่าของแรงดันไฟฟ้าที่ตกคร่อมอุปกรณ์ไฟฟ้าแต่ละตัวมีค่าเท่ากัน ส่วนทิศทางการไหลของกระแสไฟฟ้าจะมีตั้งแต่ 2 ทิศทางขึ้นไปตามลักษณะของสาขาของวงจรส่วนค่าความต้านทานรวมภายในวงจรขนานจะมีค่าเท่ากับผลรวมของส่วนกลับของค่าความต้านทานทุกตัวรวมกัน ซึ่งค่าความต้านทานรวมภายในวงจรไฟฟ้าแบบขนานจะมีค่าน้อยกว่าค่าความต้านทานภายในสาขาที่มีค่าน้อยที่สุดเสมอ และค่าแรงดันที่ตกคร่อมความต้านทานไฟฟ้าแต่ละตัวจะมีค่าเท่ากับแรงเคลื่อนของแหล่งจ่าย
รูปแสดงวงจรไฟฟ้าแบบขนาน
|
6.2.3 วงจรไฟฟ้าแบบผสม
เป็นการต่อวงจรไฟฟ้าโดยการต่อรวมกันระหว่างวงจรไฟฟ้าแบบอนุกรมกับวงจรไฟฟ้าแบบขนาน ภายในวงจรโหลดบางตัวต่อวงจรแบบอนุกรม และโหลดบางตัวต่อวงจรแบบขนาน การต่อวงจรไม่มีมาตรฐานตายตัว เปลี่ยนแปลงไปตามลักษณะการต่อวงจรตามต้องการ การวิเคราะห์แก้ปัญหาของวงจรผสม ต้องอาศัยหลักการทำงานตลอดจนอาศัยคุณสมบัติของวงจรไฟฟ้าทั้งแบบอนุกรมและแบบขนาน ลักษณะการต่อวงจรไฟฟ้าแบบผสม
รูปแสดงวงจรไฟฟ้าแบบขนาน
|
6.3 การต่อเซลล์ไฟฟ้า
เซลล์ไฟฟ้าที่ถูกสร้างขึ้นมาในรูปแบตเตอรี่ ถ่านไฟฉาย หรือแหล่งจ่ายไฟต่างๆ แต่ละเซลล์ไฟฟ้าสามารถผลิตแรงดันออกมาได้ต่ำ เซลล์ไฟฟ้าบางชนิดมีแรงดันเพียง 1.2V, 1.5V , 6V , 9V , 12V และ 24V เป็นต้น การนำเซลล์ไฟฟ้าไปใช้งานบางครั้งต้องการแรงดันมากขึ้น จึงจำเป็นต้องต่อเซลล์ไฟฟ้าเข้าด้วยกัน เพื่อให้ได้แรงดัน กระแส และกำลังไฟฟ้าเพิ่มขึ้นตามต้องการ รูปและสัญลักษณ์ของเซลล์ไฟฟ้า แสดงดังรูป
การต่อเซลล์ไฟฟ้าต่อได้ 3 วิธีด้วยกันดังนี้
1.) การต่อเซลล์แบบอนุกรม (Series Cells)
2.) การต่อเซลล์แบบขนาน (Parallel Cells)
3.) การต่อเซลล์แบบผสม (Series - Parallel Cells)
1.) การต่อเซลล์แบบอนุกรม (Series Cells)
2.) การต่อเซลล์แบบขนาน (Parallel Cells)
3.) การต่อเซลล์แบบผสม (Series - Parallel Cells)
6.4 การต่อเซลล์ไฟฟ้าแบบอนุกรม

ลักษณะคุณสมบัติของวงจรอนุกรม
1. ในวงจรหรือส่วนใดส่วนหนึ่งของวงจรอนุกรมจะมีกระแสไหลผ่านในทิศทางเดียวเท่านั้น
2. แรงดันตกคร่อมที่ความต้านทานแต่ละตัวในวงจรเมื่อนำมาร่วมกันจะมีค่าเท่ากับแรงดันที่จ่ายให้กับวงจร
3. ค่าความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากับค่าความต้านทานรวมกันทั้งหมดในวงจร
4. กำลังและพลังงานไฟฟ้าที่เกิดขึ้นที่ความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากำลังและพลังงานไฟฟ้าทั้งหมดในวงจร
1. ในวงจรหรือส่วนใดส่วนหนึ่งของวงจรอนุกรมจะมีกระแสไหลผ่านในทิศทางเดียวเท่านั้น
2. แรงดันตกคร่อมที่ความต้านทานแต่ละตัวในวงจรเมื่อนำมาร่วมกันจะมีค่าเท่ากับแรงดันที่จ่ายให้กับวงจร
3. ค่าความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากับค่าความต้านทานรวมกันทั้งหมดในวงจร
4. กำลังและพลังงานไฟฟ้าที่เกิดขึ้นที่ความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากำลังและพลังงานไฟฟ้าทั้งหมดในวงจร
6.5 การต่อเซลล์ไฟฟ้าแบบขนาน
![]() |
วงจรขนาน
|
สำหรับค่าแรงดันไฟฟ้าในวงจรขนานที่ตกคร่อมตัวต้านทานแต่ละตัวนั้น มีค่าเท่ากับค่าแรงดันไฟฟ้าของแหล่งจ่ายไฟ แรงดันไฟฟ้าที่ตกคร่อมความต้านทานแต่ละตัวซึ่งมีค่าเท่ากับ
VR1 = VR2 = VR3 = VR4 = VS = 9V
VR1 = VR2 = VR3 = VR4 = VS = 9V
กระแสไฟฟ้าในวงจรขนาน |
กระแสไฟฟ้าภายในวงจรขนานจะมีหลายค่าด้วยกัน ทั้งนี้เนื่องจากทิศทางการไหลของกระแสไฟฟ้ามีมากกว่า 1 ทิศทาง ดังนั้น การคำนวนหาค่ากระแสไฟฟ้าจึงใช้กฎของ Kerchhoff,s Current Law โดยมีวิธีการคำนวนสองวิธีคือ
1. กระแสไฟฟ้ารวมภายในวงจร ( IT ) จะมีค่าเท่ากับผลรวมของกระแสไฟฟ้าที่ไหลแยกในแต่ละทิศทาง ( I1 + I2 + I3 + I4+…..)
2. กระแสไฟฟ้าที่ไหลเข้าสู่จุดๆ หนึ่งจะมีค่าเท่ากับกระแสไฟฟ้าที่ไหลออกจากจุดๆ นั้นเสมอ
![]() |
การวัดแรงดันตกคร่อมของตัวต้านทานในวงจรขนาน
|
ลักษณะคุณสมบัติของวงจรขนาน
1. แรงดันที่ตกคร่อมที่อิลิเมนท์ หรือที่ความต้านทานทุกตัวของวงจรจะมีค่าเท่ากันเพราะว่าเป็นแรงดันตัวเดียวกันในจุดเดียวกัน
2. กระแสที่ไหลในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับกระแสที่ไหลผ่านวงจรทั้งหมดหรือกระแสรวมของวงจร
3. ค่าความนำไฟฟ้าในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับค่าความนำไฟฟ้าทั้งหมดของวงจร
4. กำลังไฟฟ้าที่เกิดขึ้นที่อิลิเมนท์หรือค่าความต้านทานในแต่ละสาขาในวงจรเมื่อนำมาร่วมกันก็จะมีค่าเท่ากับกำลังและพลังงานไฟฟ้าทั้งหมดของวงจร
1. แรงดันที่ตกคร่อมที่อิลิเมนท์ หรือที่ความต้านทานทุกตัวของวงจรจะมีค่าเท่ากันเพราะว่าเป็นแรงดันตัวเดียวกันในจุดเดียวกัน
2. กระแสที่ไหลในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับกระแสที่ไหลผ่านวงจรทั้งหมดหรือกระแสรวมของวงจร
3. ค่าความนำไฟฟ้าในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับค่าความนำไฟฟ้าทั้งหมดของวงจร
4. กำลังไฟฟ้าที่เกิดขึ้นที่อิลิเมนท์หรือค่าความต้านทานในแต่ละสาขาในวงจรเมื่อนำมาร่วมกันก็จะมีค่าเท่ากับกำลังและพลังงานไฟฟ้าทั้งหมดของวงจร
6.7 วงจรไฟฟ้าแสงสว่าง
การที่จะทำให้เกิดแสงสว่างในวงจรไฟฟ้าได้นั้น ในวงจรจะต้องประกอบด้วยแหล่งจ่ายไฟฟ้าสำหรับป้อนแรงดันและกระแสให้กับหลอดโดยผ่านสายไฟ โดยที่แหล่งจ่ายไฟฟ้าจะเป็นแบบไฟฟ้ากระแสนตรงหรือระแสสลับขึ้นอยู่กับชนิดของหลอดที่ต้องการใช้กับไฟฟ้าประเภทใด
![]() | ![]() |
วงจรแบบเปิดไฟจะดับ
|
วงจรแบบปิดไฟจะติด
|
รูปแสดงการต่อวงจร
ถ้าเป็นไฟฟ้าที่ใช้ตามอาคารบ้านเรือน ต้องป้อนไฟฟ้ากระแสสลับให้กับหลอดไฟ โดยที่แหล่งจ่ายไฟคือโรงไฟฟ้าบริเวณเขื่อนต่าง ๆ จะผลิตกระแสไฟฟ้าแล้วส่งมาตามสายไฟฟ้าแรงสูงผ่านหม้อแปลงที่การไฟฟ้าสถานีย่อย เพื่อแปลงแรงดันให้ลดลงเหลือประมาณ 12,000 โวลท์ แล้วส่งต่อมายังสายไฟตามถนนสายต่าง ๆ ก่อนที่จะตอเข้าอาคารบ้านเรือน จะมีหม้อแปลงที่ใช้ในการแปลงไฟจาก 12,000 โวลท์ เป็น 220 โวลท์ 1 เฟส โดยที่สายไฟจะมี 2 เส้น คือ ไลน์ (Line) และ นิวตรอน (Neutral) ไลน์ เป็นสายไฟที่มีไฟ ส่วนนิวตรอน เป็นสายดินไม่มีไฟ สามารถทดสอบได้โดยใช้ไขควงเช็คไฟ ถ้าไฟติดที่เส้นใดแสดงว่าเป็นเส้นไลน์ นอกจากนี้ยังมีระบบไฟฟ้าที่จ่ายให้กับโรงงานอุตสาหกรรมประเภท 3 เฟส ซึ่งแรงเคลื่อนที่จ่ายอาจจะเป็น 220 โวลท์ หรือ 380 โวลท์ขึ้นอยู่กับความต้องการใช้งาน โดยทั่วไปโรงงานอุตสาหกรรมจะต้องใช้ไฟมาก จึงจำเป็นที่จะต้องใช้ไฟแบบ 3 เฟส อาจจะมี 3 สาย หรือ 4 สาย ก็แล้วแต่ความต้องการใช้งาน

หลอดใส้
โครงสร้างภายในประกอบด้วยไส้หลอดที่ทำมาจากทังสเตน, ก้านยึดใส้หลอด, ลวดนำกระแส , แผ่นฉนวนหักเหความร้อน,ฟิวส์,ท่อดูดอากาศ และขั้วหลอดแก้วจะบรรจุก๊าซเฉี่อย เช่น อาร์กอน หรือไนโตรเจน เพื่อไม่ให้หลอดที่ร้อยขณะป้อนกระแสไฟฟ้าไหลผ่านทำให้เกิดการเผาไหม้ไส้หลอดอาจจะขาดได้



หลอดฟลูออเรสเซนต์แบบต่างๆ
เป็นหลอดไฟฟ้าที่นิยมใช้กันทั่วไป เพราะว่าให้แสงสว่างนวลสบายตา และมีอายุการใช้งานที่ยาวนานกว่าหลอดไส้ถึง 8 เท่า ลักษณะของหลอดเป็นรูปทรงกระบอก รูปวงกลมและตัวยู มีขนาดอัตราทนกำลัง 10 วัตต์, 20 วัตต์, 32 วัตต์, และ 40 วัตต์เป็นต้น ขนาด 40 วัตต์มีอายุการใช้ังาน 8,000 ถึง 12,000 ชั่วโมง ให้ความสว่างของแสงประมาณ 3,100 ลูเมน
รูปแสดงการต่อใช้งานของหลอดฟลูออเรสเซนต์
|
รูปแสดงการต่อหลอดแบบมีไส้
|
การต่อวงจรใช้งานเริ่มจากต่อสายไฟ 220 VAC เข้ากับสวิตช์ แล้วต่อเข้าหลอดไฟ ส่วนสายไฟอีกเส้นหนึ่งต่อเข้าหลอดไฟโดยตรงเมื่อทำการปิดสวิตซ์จะมีกระแสไหลทำให้หลอดไฟติดเป็นการต่อวงจรใช้งานที่ง่ายกว่าหลอดประเภทอื่น ๆ หลอดไฟประเภทนี้มีขนาดอัตราทนกำลัง 25 วัตต์ 40 วัตต์ 60 วัตต์ และ 100 วัตต์ หลอดไส้ขนาด 40 วัตต์มีอายุการใช้งาน 1,250 ชั่วโมงให้แสงสว่าง 430 ลูเมน เป็นต้น
ลองใช้เม้าคลิกลากที่อุปกรณ์ข้างล่างมาใส่ในวงจร
วันศุกร์ที่ 1 มกราคม พ.ศ. 2559
พลังงานน้ำ
พลังงานน้ำ
จากวิกิพีเดีย สารานุกรมเสรี
พลังงานทดแทน |
---|
เชื้อเพลิงชีวภาพ มวลชีวภาพ พลังงานความร้อนใต้พิภพ พลังงานน้ำ พลังงานแสงอาทิตย์ พลังงานน้ำขึ้นน้ำลง พลังงานคลื่น พลังงานลม |
พลังงานน้ำ เป็นรูปแบบหนึ่งการสร้างกำลังโดยการอาศัยพลังงานของน้ำที่เคลื่อนที่ ปัจจุบันนี้พลังงานน้ำส่วนมากจะถูกใช้เพื่อใช้ในการผลิตไฟฟ้า นอกจากนี้แล้วพลังงานน้ำยังถูกนำไปใช้ในกรมชลประทาน การสี การทอผ้า และใช้ในโรงเลื่อย พลังงานของมวลน้ำที่เคลื่อนที่ได้ถูกมนุษย์นำมาใช้มานานแล้วนับศตวรรษ โดยได้มีการสร้างกังหันน้ำ (Water Wheel) เพื่อใช้ในการงานต่างๆ ในอินเดีย และชาวโรมันก็ได้มีการประยุกต์ใช้เพื่อใช้ในการโม่แป้งจากเมล็ดพืชต่างๆ ส่วนผู้คนในจีนและตะวันออกไกลก็ได้มีการใช้พลังงานน้ำเพื่อสร้าง Pot Wheel เพื่อใช้ในวิดน้ำเพื่อการชลประทาน โดยในช่วงทศวรรษ 1830 ซึ่งเป็นยุคที่การสร้างคลองเฟื่องฟูถึงขีดสุด ก็ได้มีการประยุกต์เอาพลังงานน้ำมาใช้เพื่อขับเคลื่อนเรือขึ้นและลงจากเขา โดยอาศัยรางรถไฟที่ลาดเอียง (Inclined Plane Railroad : Funicular) โดยตัวอย่างของการประยุกต์ใช้แบบนี้ อยู่ที่คลอง Tyrone ในไอร์แลนด์เหนือ อย่างไรก็ตามเนื่องจากการประยุกต์ใช้พลังงานน้ำในยุคแรกนั้นเป็นการส่งต่อพลังงานโดยตรง (Direct Mechanical Power Transmission) ทำให้การใช้พลังงานน้ำในยุคนั้นต้องอยู่ใกล้แหล่งพลังงาน เช่น น้ำตก เป็นต้น ปัจจุบันนี้ พลังงานน้ำได้ถูกใช้เพื่อการผลิตไฟฟ้า ทำให้สามารถส่งต่อพลังงานไปใช้ในที่ที่ห่างจากแหล่งน้ำได้
พลังงานน้ำเกิดจากพลังงานแสงอาทิตย์ ที่ให้ความร้อนแก่น้ำและทำให้น้ำกลายเป็นไอน้ำลอยตัวสูงขึ้น มวลน้ำที่อยู่สูงขึ้นจากจุดเดิม (พลังงานศักย์) เมื่อมวลไอน้ำกระทบความเย็นก็จะเปลี่ยนเป็นของเหลวอีกครั้ง และตกลงมาเนื่องจากเนื่องจากแรงดึงดูดของโลก (พลังงานจลน์) การนำเอาพลังงานน้ำมาใช้ประโยชน์ทำได้โดยการเปลี่ยนพลังงานจลน์ของน้ำที่ไหลจากที่สูงลงสู่ที่ต่ำให้เป็นกระแสไฟฟ้า อุปกรณ์ที่ใช้ในการเปลี่ยนนี้คือ กังหันน้ำ (Turbines) น้ำที่มีความเร็วสูงจะผ่านเข้าท่อแล้วถ่ายทอดพลังงานจลน์เข้าสู่กังหันน้ำ ซึ่งจะไปหมุนขับเครื่องกำเนิดไฟฟ้าอีกทอดหนึ่ง ในปัจจุบันพลังงานที่ได้จากแหล่งน้ำที่รู้จักกันโดยทั่วไปคือ พลังงานน้ำตก พลังงานน้ำขึ้นน้ำลง พลังงานคลื่น
เนื้อหา
[แสดง]ประเภทของพลังงานน้ำ[แก้]
พลังงานน้ำตก[แก้]
การผลิตไฟฟ้าจากพลังงานน้ำนี้ทำได้โดยอาศัยพลังงานของน้ำตก ออกจากน้ำตกที่เกิดจากการดัดแปลงสภาพธรรมชาติ เช่น น้ำตกที่เกิดจากการสร้างเขื่อนกั้นน้ำ เป็นต้น การสร้างเขื่อนกั้นน้ำและให้น้ำตกไหลผ่านกังหันน้ำซึ่งติดอยู่บนเครื่องกำเนิดไฟฟ้ากำลังงานน้ำที่ได้จะขึ้นอยู่กับความสูงของน้ำและอัตราการไหลของน้ำที่ปล่อยลงมา
พลังงานน้ำขึ้นน้ำลง[แก้]
มีพื้นฐานมาจากพลังงานศักย์และพลังงานจลน์ของระบบที่ประกอบด้วยดวงอาทิตย์ โลก และดวงจันทร์ จึงจัดเป็นแหล่งพลังงานประเภทใช้แล้วไม่หมดไป สำหรับในการเปลี่ยนพลังงานน้ำขึ้นน้ำลงให้เป็นพลังงานไฟฟ้า คือ เลือกแม่น้ำหรืออ่าวที่มีพื้นที่เก็บน้ำได้มากและพิสัยของน้ำขึ้นน้ำลงมีค่าสูงแล้วสร้างเขื่อนที่ปากแม่น้ำหรือปากอ่าว เพื่อให้เกิดเป็นอ่างเก็บน้ำขึ้นมา เมื่อน้ำขึ้นจะไหลเข้าสู่อ่างเก็บน้ำ และเมื่อน้ำลงน้ำจะไหลออกจากอ่างเก็บน้ำ การไหลเข้าออกจากอ่างของน้ำต้องควบคุมให้ไหลผ่านกังหันน้ำที่ต่อเชื่อมกับเครื่องกำเนิดไฟฟ้า เมื่อกังหันน้ำหมุนก็จะได้ไฟฟ้าออกมาใช้งานหลักการผลิตไฟฟ้าจากน้ำขึ้นน้ำลงมีหลักการเช่นเดียวกับการผลิตไฟฟ้าจากพลังงานน้ำตก แต่กำลังที่ได้จากพลังงานน้ำขึ้นน้ำลงจะไม่ค่อยสม่ำเสมอเปลี่ยนแปลงไปมากในช่วงขึ้นลงของน้ำ แต่อาจจัดให้มีพื้นที่กักน้ำเป็นสองบริเวณหรือบริเวณพื้นที่เดียว โดยการจัดระบบการไหลของน้ำระหว่างบริเวณบ่อสูงและบ่อต่ำ และกักบริเวณภายนอกในช่วงที่มีการขึ้นลงของน้ำอย่างเหมาะสม จะทำให้กำลังงานพลังงานน้ำขึ้นน้ำลงสม่ำเสมอดีขึ้น
พลังงานคลื่น[แก้]
เป็นการเก็บเกี่ยวเอา พลังงานที่ลม ถ่ายทอดให้กับผิวน้ำในมหาสมุทรเกิดเป็นคลื่นวิ่งเข้าสู่ชายฝั่งและเกาะแก่งต่างๆเครื่องผลิต ไฟฟ้าพลังงานคลื่นจะถูกออกแบบให้ลอยตัวอยู่บนผิวน้ำบริเวณหน้าอ่าวด้านหน้าที่หันเข้าหา คลื่น การใช้คลื่นเพื่อผลิตไฟฟ้านั้นถ้าจะให้ได้ผลจะต้องอยู่ในโซนที่มียอดคลื่นเฉลี่ยอยู่ที่ 8 เมตร ซึ่งบริเวณนั้นต้องมีแรงลมด้วย แต่จากการวัดความสูงของยอดคลื่นสูงสุดในประเทศไทยที่จังหวัดระนองพบว่า ยอดคลื่นสูงสุดเฉลี่ยอยู่ที่ 4 เมตรเท่านั้น ซึ่งก็แน่นอนว่าด้วยเทคโนโลยี การผลิตไฟฟ้าด้วยพลังงานคลื่นในปัจจุบันนั้นยังคงไม่สามารถใช้ในบ้านเราให้ผลจริงจังได้
ประโยชน์ของพลังงานน้ำ[แก้]
พลังงานน้ำ มีประโยชน์หลายอย่างในการนำมาใช้ ประโยชน์หลักๆ มีดังนี้
- พลังงานน้ำเป็นพลังงานหมุนเวียนที่สามารถนำกลับมาใช้ใหม่ได้ไม่หมดสิ้น คือเมื่อใช้พลังงานของน้ำส่วนหนึ่งไปแล้วน้ำส่วนนั้นก็จะไหลลงสู่ทะเลและน้ำในทะเลเมื่อได้รับพลังงานจากแสงอาทิตย์ก็จะระเหยกลายเป็นไอน้ำ เมื่อไอน้ำควบแน่นกลายเป็นเมฆ เมื่อไอน้ำขึ้นเมฆก็จะกลายเป็นเมฆฝน พอมากเข้าจนเมฆรับน้ำหนักของไอน้ำเหล่านี้ต่อไปได้ น้ำตกลงมาเป็นฝนหมุนเวียนกลับมาทำให้เราสามารถใช้พลังงานน้ำได้ตลอดไปไม่หมดสิ้น
- เครื่องกลพลังงานน้ำสามารถเริ่มดำเนินการผลิตพลังงานได้ในเวลาอันรวดเร็ว และควบคุมให้ผลิตกำลังงานออกมาได้ใกล้เคียงกับความต้องการ อีกทั้งยังมีประสิทธิภาพในการทำงานสูงมาก ชิ้นส่วนของเครื่องกลพลังงานน้ำส่วนใหญ่จะมีความคงทน และมีอายุการใช้งานนานกว่าเครื่องจักรกลอย่างอื่น
- เมื่อนำพลังงานน้ำไปใช้แล้ว น้ำยังคงมีคุณภาพเหมือนเดิมทำให้สามารถนำไปใช้ประโยชน์อย่างอื่นได้อีก เช่น เพื่อการชลประทาน การรักษาระดับน้ำในแม่น้ำให้ไหลลึกพอแก่การเดินเรือ เป็นต้น
- การสร้างเขื่อนเพื่อกักเก็บและทดน้ำให้สูงขึ้น สามารถช่วยกักน้ำเอาไว้ใช้ในช่วงที่ไม่มีฝนตก ทำให้ได้แหล่งน้ำขนาดใหญ่สามารถใช้เลี้ยงสัตว์น้ำหรือใช้เป็นสถานที่ท่องเที่ยวได้ และยังช่วยรักษาระบบนิเวศของแม่น้ำได้โดยการปล่อยน้ำจากเขื่อนเพื่อไล่น้ำโสโครกในแม่น้ำที่เกิดจากโรงงานอุตสาหกรรม นอกจากนี้ยังสามารถใช้ไล่น้ำเค็มซึ่งขึ้นมาจากทะเลก็ได้
แต่พลังงานน้ำมีข้อเสียบางประการ เช่น การพัฒนาแหล่งพลังงานน้ำต้องใช้เงินลงทุนสูง และยังทำให้เสียพื้นที่ของป่าไปบางส่วน นอกจากนี้พลังงานน้ำยังมีความไม่แน่นอนเกิดขึ้น เช่น หน้าแล้งหรือกรณีที่ฝนไม่ตกต้องตามฤดูกาล และมักเกิดปัญหาในเรื่องการจัดหาบุคลากรไปปฏิบัติงาน รวมทั้งการซ่อมแซม บำรุงรักษาสิ่งก่อสร้าง และอุปกรณ์ต่าง ๆ จะไม่ค่อยสะดวกนัก เพราะสถานที่ตั้งอยู่ห่างไกลจากชุมชน
การนำไปใช้[แก้]
ปัจจุบันนี้ พลังงานน้ำได้ถูกนำไปใช้ในหลายรูปแบบด้วยกัน
- กังหันน้ำ เป็นรูปแบบการใช้พลังงานน้ำที่เก่าแก่ที่สุด
- การผลิตกระแสไฟฟ้าจากพลังงานน้ำ (Hydroelectric Energy) โดยมากแล้วจะได้พลังงานประเภทนี้จากเขื่อน หรือกังหันน้ำขนาดเล็กตามกระแสน้ำเชี่ยวต่างๆ
- Tidal Power
- Tidal Stream Power
- พลังงานคลื่น (Wave Power)
พลังงานน้ำ
จากวิกิพีเดีย สารานุกรมเสรีพลังงานทดแทน เชื้อเพลิงชีวภาพ
มวลชีวภาพ
พลังงานความร้อนใต้พิภพ
พลังงานน้ำ
พลังงานแสงอาทิตย์
พลังงานน้ำขึ้นน้ำลง
พลังงานคลื่น
พลังงานลมพลังงานน้ำ เป็นรูปแบบหนึ่งการสร้างกำลังโดยการอาศัยพลังงานของน้ำที่เคลื่อนที่ ปัจจุบันนี้พลังงานน้ำส่วนมากจะถูกใช้เพื่อใช้ในการผลิตไฟฟ้า นอกจากนี้แล้วพลังงานน้ำยังถูกนำไปใช้ในกรมชลประทาน การสี การทอผ้า และใช้ในโรงเลื่อย พลังงานของมวลน้ำที่เคลื่อนที่ได้ถูกมนุษย์นำมาใช้มานานแล้วนับศตวรรษ โดยได้มีการสร้างกังหันน้ำ (Water Wheel) เพื่อใช้ในการงานต่างๆ ในอินเดีย และชาวโรมันก็ได้มีการประยุกต์ใช้เพื่อใช้ในการโม่แป้งจากเมล็ดพืชต่างๆ ส่วนผู้คนในจีนและตะวันออกไกลก็ได้มีการใช้พลังงานน้ำเพื่อสร้าง Pot Wheel เพื่อใช้ในวิดน้ำเพื่อการชลประทาน โดยในช่วงทศวรรษ 1830 ซึ่งเป็นยุคที่การสร้างคลองเฟื่องฟูถึงขีดสุด ก็ได้มีการประยุกต์เอาพลังงานน้ำมาใช้เพื่อขับเคลื่อนเรือขึ้นและลงจากเขา โดยอาศัยรางรถไฟที่ลาดเอียง (Inclined Plane Railroad : Funicular) โดยตัวอย่างของการประยุกต์ใช้แบบนี้ อยู่ที่คลอง Tyrone ในไอร์แลนด์เหนือ อย่างไรก็ตามเนื่องจากการประยุกต์ใช้พลังงานน้ำในยุคแรกนั้นเป็นการส่งต่อพลังงานโดยตรง (Direct Mechanical Power Transmission) ทำให้การใช้พลังงานน้ำในยุคนั้นต้องอยู่ใกล้แหล่งพลังงาน เช่น น้ำตก เป็นต้น ปัจจุบันนี้ พลังงานน้ำได้ถูกใช้เพื่อการผลิตไฟฟ้า ทำให้สามารถส่งต่อพลังงานไปใช้ในที่ที่ห่างจากแหล่งน้ำได้พลังงานน้ำเกิดจากพลังงานแสงอาทิตย์ ที่ให้ความร้อนแก่น้ำและทำให้น้ำกลายเป็นไอน้ำลอยตัวสูงขึ้น มวลน้ำที่อยู่สูงขึ้นจากจุดเดิม (พลังงานศักย์) เมื่อมวลไอน้ำกระทบความเย็นก็จะเปลี่ยนเป็นของเหลวอีกครั้ง และตกลงมาเนื่องจากเนื่องจากแรงดึงดูดของโลก (พลังงานจลน์) การนำเอาพลังงานน้ำมาใช้ประโยชน์ทำได้โดยการเปลี่ยนพลังงานจลน์ของน้ำที่ไหลจากที่สูงลงสู่ที่ต่ำให้เป็นกระแสไฟฟ้า อุปกรณ์ที่ใช้ในการเปลี่ยนนี้คือ กังหันน้ำ (Turbines) น้ำที่มีความเร็วสูงจะผ่านเข้าท่อแล้วถ่ายทอดพลังงานจลน์เข้าสู่กังหันน้ำ ซึ่งจะไปหมุนขับเครื่องกำเนิดไฟฟ้าอีกทอดหนึ่ง ในปัจจุบันพลังงานที่ได้จากแหล่งน้ำที่รู้จักกันโดยทั่วไปคือ พลังงานน้ำตก พลังงานน้ำขึ้นน้ำลง พลังงานคลื่นเนื้อหา
[แสดง]ประเภทของพลังงานน้ำ[แก้]
พลังงานน้ำตก[แก้]
การผลิตไฟฟ้าจากพลังงานน้ำนี้ทำได้โดยอาศัยพลังงานของน้ำตก ออกจากน้ำตกที่เกิดจากการดัดแปลงสภาพธรรมชาติ เช่น น้ำตกที่เกิดจากการสร้างเขื่อนกั้นน้ำ เป็นต้น การสร้างเขื่อนกั้นน้ำและให้น้ำตกไหลผ่านกังหันน้ำซึ่งติดอยู่บนเครื่องกำเนิดไฟฟ้ากำลังงานน้ำที่ได้จะขึ้นอยู่กับความสูงของน้ำและอัตราการไหลของน้ำที่ปล่อยลงมาพลังงานน้ำขึ้นน้ำลง[แก้]
มีพื้นฐานมาจากพลังงานศักย์และพลังงานจลน์ของระบบที่ประกอบด้วยดวงอาทิตย์ โลก และดวงจันทร์ จึงจัดเป็นแหล่งพลังงานประเภทใช้แล้วไม่หมดไป สำหรับในการเปลี่ยนพลังงานน้ำขึ้นน้ำลงให้เป็นพลังงานไฟฟ้า คือ เลือกแม่น้ำหรืออ่าวที่มีพื้นที่เก็บน้ำได้มากและพิสัยของน้ำขึ้นน้ำลงมีค่าสูงแล้วสร้างเขื่อนที่ปากแม่น้ำหรือปากอ่าว เพื่อให้เกิดเป็นอ่างเก็บน้ำขึ้นมา เมื่อน้ำขึ้นจะไหลเข้าสู่อ่างเก็บน้ำ และเมื่อน้ำลงน้ำจะไหลออกจากอ่างเก็บน้ำ การไหลเข้าออกจากอ่างของน้ำต้องควบคุมให้ไหลผ่านกังหันน้ำที่ต่อเชื่อมกับเครื่องกำเนิดไฟฟ้า เมื่อกังหันน้ำหมุนก็จะได้ไฟฟ้าออกมาใช้งานหลักการผลิตไฟฟ้าจากน้ำขึ้นน้ำลงมีหลักการเช่นเดียวกับการผลิตไฟฟ้าจากพลังงานน้ำตก แต่กำลังที่ได้จากพลังงานน้ำขึ้นน้ำลงจะไม่ค่อยสม่ำเสมอเปลี่ยนแปลงไปมากในช่วงขึ้นลงของน้ำ แต่อาจจัดให้มีพื้นที่กักน้ำเป็นสองบริเวณหรือบริเวณพื้นที่เดียว โดยการจัดระบบการไหลของน้ำระหว่างบริเวณบ่อสูงและบ่อต่ำ และกักบริเวณภายนอกในช่วงที่มีการขึ้นลงของน้ำอย่างเหมาะสม จะทำให้กำลังงานพลังงานน้ำขึ้นน้ำลงสม่ำเสมอดีขึ้นพลังงานคลื่น[แก้]
เป็นการเก็บเกี่ยวเอา พลังงานที่ลม ถ่ายทอดให้กับผิวน้ำในมหาสมุทรเกิดเป็นคลื่นวิ่งเข้าสู่ชายฝั่งและเกาะแก่งต่างๆเครื่องผลิต ไฟฟ้าพลังงานคลื่นจะถูกออกแบบให้ลอยตัวอยู่บนผิวน้ำบริเวณหน้าอ่าวด้านหน้าที่หันเข้าหา คลื่น การใช้คลื่นเพื่อผลิตไฟฟ้านั้นถ้าจะให้ได้ผลจะต้องอยู่ในโซนที่มียอดคลื่นเฉลี่ยอยู่ที่ 8 เมตร ซึ่งบริเวณนั้นต้องมีแรงลมด้วย แต่จากการวัดความสูงของยอดคลื่นสูงสุดในประเทศไทยที่จังหวัดระนองพบว่า ยอดคลื่นสูงสุดเฉลี่ยอยู่ที่ 4 เมตรเท่านั้น ซึ่งก็แน่นอนว่าด้วยเทคโนโลยี การผลิตไฟฟ้าด้วยพลังงานคลื่นในปัจจุบันนั้นยังคงไม่สามารถใช้ในบ้านเราให้ผลจริงจังได้ประโยชน์ของพลังงานน้ำ[แก้]
พลังงานน้ำ มีประโยชน์หลายอย่างในการนำมาใช้ ประโยชน์หลักๆ มีดังนี้- พลังงานน้ำเป็นพลังงานหมุนเวียนที่สามารถนำกลับมาใช้ใหม่ได้ไม่หมดสิ้น คือเมื่อใช้พลังงานของน้ำส่วนหนึ่งไปแล้วน้ำส่วนนั้นก็จะไหลลงสู่ทะเลและน้ำในทะเลเมื่อได้รับพลังงานจากแสงอาทิตย์ก็จะระเหยกลายเป็นไอน้ำ เมื่อไอน้ำควบแน่นกลายเป็นเมฆ เมื่อไอน้ำขึ้นเมฆก็จะกลายเป็นเมฆฝน พอมากเข้าจนเมฆรับน้ำหนักของไอน้ำเหล่านี้ต่อไปได้ น้ำตกลงมาเป็นฝนหมุนเวียนกลับมาทำให้เราสามารถใช้พลังงานน้ำได้ตลอดไปไม่หมดสิ้น
- เครื่องกลพลังงานน้ำสามารถเริ่มดำเนินการผลิตพลังงานได้ในเวลาอันรวดเร็ว และควบคุมให้ผลิตกำลังงานออกมาได้ใกล้เคียงกับความต้องการ อีกทั้งยังมีประสิทธิภาพในการทำงานสูงมาก ชิ้นส่วนของเครื่องกลพลังงานน้ำส่วนใหญ่จะมีความคงทน และมีอายุการใช้งานนานกว่าเครื่องจักรกลอย่างอื่น
- เมื่อนำพลังงานน้ำไปใช้แล้ว น้ำยังคงมีคุณภาพเหมือนเดิมทำให้สามารถนำไปใช้ประโยชน์อย่างอื่นได้อีก เช่น เพื่อการชลประทาน การรักษาระดับน้ำในแม่น้ำให้ไหลลึกพอแก่การเดินเรือ เป็นต้น
- การสร้างเขื่อนเพื่อกักเก็บและทดน้ำให้สูงขึ้น สามารถช่วยกักน้ำเอาไว้ใช้ในช่วงที่ไม่มีฝนตก ทำให้ได้แหล่งน้ำขนาดใหญ่สามารถใช้เลี้ยงสัตว์น้ำหรือใช้เป็นสถานที่ท่องเที่ยวได้ และยังช่วยรักษาระบบนิเวศของแม่น้ำได้โดยการปล่อยน้ำจากเขื่อนเพื่อไล่น้ำโสโครกในแม่น้ำที่เกิดจากโรงงานอุตสาหกรรม นอกจากนี้ยังสามารถใช้ไล่น้ำเค็มซึ่งขึ้นมาจากทะเลก็ได้
แต่พลังงานน้ำมีข้อเสียบางประการ เช่น การพัฒนาแหล่งพลังงานน้ำต้องใช้เงินลงทุนสูง และยังทำให้เสียพื้นที่ของป่าไปบางส่วน นอกจากนี้พลังงานน้ำยังมีความไม่แน่นอนเกิดขึ้น เช่น หน้าแล้งหรือกรณีที่ฝนไม่ตกต้องตามฤดูกาล และมักเกิดปัญหาในเรื่องการจัดหาบุคลากรไปปฏิบัติงาน รวมทั้งการซ่อมแซม บำรุงรักษาสิ่งก่อสร้าง และอุปกรณ์ต่าง ๆ จะไม่ค่อยสะดวกนัก เพราะสถานที่ตั้งอยู่ห่างไกลจากชุมชนการนำไปใช้[แก้]
ปัจจุบันนี้ พลังงานน้ำได้ถูกนำไปใช้ในหลายรูปแบบด้วยกัน- กังหันน้ำ เป็นรูปแบบการใช้พลังงานน้ำที่เก่าแก่ที่สุด
- การผลิตกระแสไฟฟ้าจากพลังงานน้ำ (Hydroelectric Energy) โดยมากแล้วจะได้พลังงานประเภทนี้จากเขื่อน หรือกังหันน้ำขนาดเล็กตามกระแสน้ำเชี่ยวต่างๆ
- Tidal Power
- Tidal Stream Power
- พลังงานคลื่น (Wave Power)
สมัครสมาชิก:
บทความ (Atom)